Symmetric components are very important quantities used in the implementation of relay protection and automation algorithms. Symmetrical components allow for more sensitive defenses.
The site has already provided a model of the filter of symmetrical components in Simulink.
Recall that the positive, negative and zero sequence components are calculated by the following expressions [1]:
$$ \underline{V}_1 = \frac{1}{3} \lparen \underline{V}_A + \underline{a} \cdot \underline{V}_B + \underline{a}^2 \cdot \underline{V}_C \rparen, $$
$$ \underline{V}_2 = \frac{1}{3} \lparen \underline{V}_A + \underline{a}^2 \cdot \underline{V}_B + \underline{a} \cdot \underline{V}_C \rparen, $$
$$ \underline{V}_0 = \frac{1}{3} \lparen \underline{V}_A + \underline{V}_B + \underline{V}_C \rparen, $$
where VA, VB, VC – phase currents or voltages; $ \underline{a} = \exp \lparen j2 \pi /3 \rparen $ – rotation operator; V1, V2, V0 – symmetric components of the positive, negative and zero sequences, respectively.
Of the symmetrical components, the phase quantities are calculated by the following expressions:
$$ \underline{V}_A = \frac{1}{3} \lparen \underline{V}_1 + \underline{V}_2 + \underline{V}_0 \rparen, $$
$$ \underline{V}_B = \frac{1}{3} \lparen \underline{a}^2 \cdot \underline{V}_1 + \underline{a} \cdot \underline{V}_2 + \underline{V}_0 \rparen, $$
$$ \underline{V}_C = \frac{1}{3} \lparen \underline{a} \cdot \underline{V}_1 + \underline{a}^2 \cdot \underline{V}_2 + \underline{V}_0 \rparen. $$
Use the calculator to calculate the symmetrical components online.
References
- Zeveke G.V., Ionkin P.A., Netushil A.V., Strakhov S.V. Fundamentals of circuit theory. Textbook for high schools. Ed. 4th, revised. M., “Energy”, 1975.