Суть метода эквивалентного генератора

Метод эквивалентного генератора (МЭГ) применяется, когда есть некая нагрузка, подключённая к сложной активной цепи. При этом активная цепь сама по себе интереса не представляет, но необходимо учесть её влияние на нагрузку, на которую направлен фокус. С помощью данного метода активная цепь преобразуется в очень простой вид – в одну ветвь с эквивалентной ЭДС Eэкв и с эквивалентным сопротивлением Zэкв.

Воспользуйтесь программой онлайн-расчёта электрических цепей.

Суть метода эквивалентного генератора [1]

Пример того, как это делается, приведён на рис. 1. Самое важное здесь то, что ток в нагрузке что в исходной цепи, что в преобразованной, одинаковый. Именно в этом смысле эквивалентный генератор и эквивалентен исходной активной цепи.


Рис. 1. Преобразование активной цепи в эквивалентный генератор

МЭГ применяется для решения самых разнообразных задач. Например, он используется в электроэнергетике, когда нужно рассчитать различные режимы сети. Конкретно используется для того, чтобы эквивалентировать всю внешнюю сеть по отношению к рассчитываемой, и тем самым упростить расчёт. Также часто бывает, что о внешней сети вообще мало что известно, и в этих условиях расчётчики просто вынуждены довольствоваться одним только эквивалентным генератором.

Эквивалентная ЭДС Eэкв и с эквивалентное сопротивление Zэкв в зависимости от решаемой задачи могут быть определены двумя способами:

  • расчётом активной цепи с отключённой от неё нагрузкой;
  • опытным путём, с помощью опытов холостого хода (когда Zнг = ∞) и короткого замыкания (когда Zнг = 0).

Первым способом можно воспользоваться только тогда, когда вся активная цепь перед глазами и известны все её параметры. А когда эквивалентируемая цепь – это «чёрный ящик», на котором можно проводить опыты, работает второй способ. В чём заключаются оба эти способа – очень важная информация для усвоения каждого изучающего ТОЭ, но намного важней знания о том, почему они работают. Поэтому далее подробно рассмотрим из чего именно вытекает МЭГ.

Возьмём пример по рис. 1 и для начала изолируем эквивалентируемую активную цепь от нагрузки (рис. 2). Это будет режим холостого хода, когда тока в нагрузке нет. В этом режиме нас интересует напряжение Uхх между выводами 1 и 2. Такое же напряжение будет между выводами 1 и 3, если соединить между собой выводы 2 и 4 (см. рис. 3), поскольку ток в нагрузке при этом останется равным нулю и падение напряжения между выводами 3 и 4 также будет нулевым.


Рис. 2. Холостой ход эквивалентируемой цепи


Рис. 3. Соединение выводов 2 и 4

Теперь очень важная мысль: если между выводами 1 и 3 включить ЭДС, равную Uхх, как это показано на рис. 4, то в результате ничего не изменится. Это очевидно, ведь такая ЭДС пытается поддержать между выводами 1 и 3 напряжение Uхх, а это было так и до её включения.


Рис. 4. Включение между выводами 1 и 3 ЭДС, равной Uхх

Далее, если рядом включить ещё такую же ЭДС, но с противоположным направлением, то в итоге получится исходная активная цепь с подключённой к ней нагрузке, как на рис. 1. Всё это проиллюстрировано на рис. 5.


Рис. 5. Включение между выводами 1 и 3 ещё одной такой же ЭДС с противоположным направлением

Применим принцип наложения и разложим получившуюся цепь с двумя ЭДС между выводами 1 и 3 на две части. Распределим между этими двумя частями все имеющиеся источники тока и ЭДС так, как это показано на рис. 6 (вспомним, что по принципу наложения исключаемые из одной из частей источники тока должны разрываться, а источники ЭДС – закорачиваться).


Рис. 6. Разделение активной цепи с нагрузкой на две части

Что имеем в итоге? Одну из частей мы уже видели на рис. 4, с точки зрения нагрузки это то же самое, что и на рис. 2, т.е. холостой ход. Для этой части ток в нагрузке получается нулевым, поэтому далее её можно исключить из рассмотрения. И выходит, что весь ток в нагрузке создаётся второй частью разделившейся цепи, она оказывается ей эквивалентной.

Далее дело техники преобразовать получившуюся пассивную цепь в эквивалентное сопротивление, затем объединить её с единственной в этой цепи ЭДС и получить таким образом то, что называется эквивалентным генератором (рис. 7).


Рис. 7. Готовый эквивалентный генератор

Особенности метода эквивалентного генератора

  • Т.к. МЭГ основан на принципе наложения, его можно применять только для линейных электрических цепей, для которых данный принцип работает. Для нелинейных цепей МЭГ применён быть не может.
  • МЭГ работает на комплексных схемах замещения, т.е. только для какой-то одной частоты. Часто это бывают схемы для частоты сети (50 или 60 Гц) или это цепи постоянного тока (0 Гц).
  • Из предыдущего замечания вытекает, что эквивалентные генераторы некорректно использовать в схемах расчёта переходных процессов в мгновенной форме.
  • В качестве нагрузки эквивалентного генератора может выступать активная цепь. В этом случае нужно быть очень аккуратным при определении эквивалентной ЭДС.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.

1 комментарий для “Суть метода эквивалентного генератора”

Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.